Soutenance de thèse : Synthesis for Parameterized Systems

Soutenance de thèse : Synthesis for Parameterized Systems

Mathieu Lehaut

Sorbonne Université, LIP6

17/12/2020

Outline

2 Control

Parameterized systems

Parameterized systems

Parameterized systems

Distributed systems

Systems with multiple components collaborating towards one goal

Parameterized systems

Examples of real-life distributed systems

• Distributed computing

Parameterized systems

Examples of real-life distributed systems

- Distributed computing
- Communication networks

Parameterized systems

Examples of real-life distributed systems

- Distributed computing
- Communication networks
- Drone fleets

Parameterized systems

Parameterized systems

Number of components not known in advance

Open systems

► Systems interact with an uncontrollable environment!

Open systems

► Systems interact with an uncontrollable environment!

Drone example

Open systems

► Systems interact with an uncontrollable environment!

Drone example

• Sensors (camera, thermometers, ...)

Open systems

► Systems interact with an uncontrollable environment!

Drone example

- Sensors (camera, thermometers, ...)
- Operator inputs

Open systems

► Systems interact with an uncontrollable environment!

Drone example

- Sensors (camera, thermometers, ...)
- Operator inputs
- Environmental conditions (wind, rain, ...)

Verification

Verification

Bugs

Differences between:

Verification

Bugs

Differences between:

• What the system does (behaviors)

Verification

Bugs

Differences between:

- What the system does (behaviors)
- What the system is supposed to do (specification)

Verification

Bugs

Differences between:

- What the system does (behaviors)
- What the system is supposed to do (specification)

► Goal: all behaviors of the system must satisfy the specification

```
Model checking [Clarke, Emerson, Sifakis]
```

```
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```

```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model M
O: M \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model M
O: M \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model \mathcal{M}
O: \mathcal{M} \models S?
```



```
Model checking [Clarke, Emerson, Sifakis]
I: A specification S, a model M
O: M \models S?
```


Synthesis and control

Synthesis

I: A specification S

Synthesis and control

Synthesis

I: A specification SO: \mathcal{M} s.t. $\mathcal{M} \models S$ if it exists

Synthesis and control

Synthesis

I: A specification SO: \mathcal{M} s.t. $\mathcal{M} \models S$ if it exists

Control

I: A specification S, a partially-defined model $\mathcal M$

Synthesis and control

Synthesis

I: A specification SO: \mathcal{M} s.t. $\mathcal{M} \models S$ if it exists

Control

I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$ Soutenance de thèse : Synthesis for Parameterized Systems Control

Outline

Context and motivations

2 Control

- Parameterized Pushdown Systems
- Round-bounded Behaviors
- The Control Problem

3 Synthesis

Soutenance de thèse : Synthesis for Parameterized Systems

Control

Parameterized Pushdown Systems

Model

Control

I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$
Control

Parameterized Pushdown Systems

Model

Control

I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$

► How to model dynamic parameterized systems?

Control

Parameterized Pushdown Systems

Model

Control I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$

► How to model dynamic parameterized systems? 1 process

Control

Parameterized Pushdown Systems

Model

Control I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$

► How to model dynamic parameterized systems? *n* processes

-Control

Parameterized Pushdown Systems

Model

Control

I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$

► How to model dynamic parameterized systems? *n* communicating processes

-Control

Parameterized Pushdown Systems

Model

Control

I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$

► How to model dynamic parameterized systems? Specification : reachability objective

-Control

Parameterized Pushdown Systems

Model

Control

I: A specification *S*, a partially-defined model \mathcal{M} O: A Controller *C* s.t. $\mathcal{M} \parallel \mathcal{C} \models S$

▶ How to model dynamic parameterized systems?

- Data automata [Bojanczyk et al., 2011]
- Asynchronous dynamic pushdown networks [Bouajjani et al., 2005]

Control

Parameterized Pushdown Systems

-Control

Parameterized Pushdown Systems

-Control

Parameterized Pushdown Systems

-Control

Parameterized Pushdown Systems

-Control

Parameterized Pushdown Systems

Control

Parameterized Pushdown Systems

-Control

Parameterized Pushdown Systems

Control

Parameterized Pushdown Systems

Example: Scheduler model (1/3)

Behavior we want to model:

- 1. Scheduler sends requests and starts processes,
- 2. Then each process performs the requested tasks,
- 3. Then each process stops.

Control

Control

Control

Control

Control

Control

Control

Control

Control

Parameterized Pushdown Systems

Example: Scheduler model (3/3)

Control

Parameterized Pushdown Systems

Example: Scheduler model (3/3)

-Control

Round-bounded Behaviors

Round-bounded behaviors

Even Reachability is undecidable!

-Control

Round-bounded Behaviors

Round-bounded behaviors

Even Reachability is undecidable!

► Need underapproximations techniques:

-Control

Round-bounded Behaviors

Round-bounded behaviors

Even Reachability is undecidable!

- ► Need underapproximations techniques:
 - Context-bounded behaviors [Qadeer, Rehof, 2005]

-Control

Round-bounded Behaviors

Round-bounded behaviors

Even Reachability is undecidable!

- ► Need underapproximations techniques:
 - Context-bounded behaviors [Qadeer, Rehof, 2005]
 - Round-bounded behaviors [La Torre et al., 2010]

Round-bounded Behaviors

Round-bounded behaviors

Restriction: rounds

One round:

1111222333334555... 11112222555888 ... X 1 1 1 2 2 3 3 1 4 4 6 ...

```
Soutenance de thèse : Synthesis for Parameterized Systems
```

Control

Round-bounded Behaviors

Round-bounded behaviors

Restriction: rounds

One round:

```
1111222333334555...
```

11112222555888 ...

```
X 1 1 1 2 2 3 3 1 4 4 6 ...
```

N rounds:

```
1 1 1 2 3 4 4 | 1 3 3 4 5 | 3 3 5 6 6 6 7 | ...
```

Round-bounded Behaviors

Round-bounded behaviors

Restriction: rounds

One round:

- 1111222333334555...
- 11112222555888...

```
X 1 1 1 2 2 3 3 1 4 4 6 ...
```

N rounds:

```
1 1 1 2 3 4 4 | 1 3 3 4 5 | 3 3 5 6 6 6 7 | ...
```

Theorem [La Torre et al., 2010] [ATVA 2018]

Round-bounded Reachability is PSPACE-complete.

└─ The Control Problem

Control: Parameterized Pushdown Games

-The Control Problem

Control: Parameterized Pushdown Games

-The Control Problem

Control: Parameterized Pushdown Games

► Partition of global states.

Control problem

Is there a winning strategy for the Controller?

Soutenance de thèse : Synthesis for Parameterized Systems
Control
The Control Problem

Our result

Theorem [ATVA 2018]

The round-bounded control problem is decidable, but inherently non-elementary.

Soutenance de thèse : Synthesis for Parameterized Systems
Control
The Control Problem

Our result

Theorem [ATVA 2018]

The round-bounded control problem is decidable, but inherently non-elementary.

Proof idea

- Decidability: Reduction to *phase-bounded multi-pushdown* games [Atig et al., 2017]
- Hardness: Reduction of satisfiability of FO[<] on finite words [Stockmeyer, 1970]
Soutenance de thèse : Synthesis for Parameterized Systems
Control
The Control Problem

Our result

Theorem [ATVA 2018]

The round-bounded control problem is decidable, but inherently non-elementary.

Soutenance de thèse : Synthesis for Parameterized Systems
Control
The Control Problem

Our result

Theorem [ATVA 2018]

The round-bounded control problem is decidable, but inherently non-elementary.

Soutenance de thèse : Synthesis for Parameterized Systems
Control
The Control Problem

Our result

Theorem [ATVA 2018]

The round-bounded control problem is decidable, but inherently non-elementary.

Soutenance de thèse : Synthesis for Parameterized Systems └─ Synthesis

Outline

Context and motivations

3 Synthesis

- Executions and Specifications
- The Synthesis Problem
- \bullet FO²
- FO[~]

Soutenance de thèse : Synthesis for Parameterized Systems

Parameterized Synthesis

${\small Synthesis}$

I: A specification S O: \mathcal{M} s.t. $\mathcal{M} \models S$ if it exists Soutenance de thèse : Synthesis for Parameterized Systems

Parameterized Synthesis

Synthesis I: A specification S O: \mathcal{M} s.t. $\mathcal{M} \models S$ if it exists

► Fixed number of processes

```
Soutenance de thèse : Synthesis for Parameterized Systems
Synthesis
Executions and Specifications
```

```
Behaviors for A = \{req, ack\}
```

• 1 process: $w = req \ ack \ req \ ack$

Behaviors for $A = \{req, ack\}$

- 1 process: $w = req \ ack \ req \ ack$
- fixed number of processes: $w = req_1 req_3 ack_1 ack_3$

Behaviors for $A = \{req, ack\}$

- 1 process: $w = req \ ack \ req \ ack$
- fixed number of processes: $w = req_1 req_3 ack_1 ack_3$
- unknown (not bounded) number of processes:
 w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack, 6)(ack, 3)

Behaviors for $A = \{req, ack\}$

- 1 process: $w = req \ ack \ req \ ack$
- fixed number of processes: $w = req_1 req_3 ack_1 ack_3$
- unknown (not bounded) number of processes:
 w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack, 6)(ack, 3)

Data words [Bojanczyk et al., 2006]

- A: finite alphabet (actions),
- D: infinite set of data values (process identities)

Data word: (in)finite word over $A imes \mathcal{D}$

Soutenance de thèse : Synthesis for Parameterized Systems

Executions and Specifications

Executions II: System vs Environment

System actions and Environment actions

 $\blacktriangleright A = A_{sys} \uplus A_{env}$

```
Soutenance de thèse : Synthesis for Parameterized Systems
Synthesis
Executions and Specifications
```

Executions II: System vs Environment

System actions and Environment actions $\blacktriangleright A = A_{sys} \uplus A_{env}$

System and Environment processes $\blacktriangleright \mathbb{P} = (\mathbb{P}_{sys}, \mathbb{P}_{env}, \mathbb{P}_{se})$ with \mathbb{P}_{θ} finite set of processes

```
Soutenance de thèse : Synthesis for Parameterized Systems
Synthesis
Executions and Specifications
```

Executions II: System vs Environment

System actions and Environment actions $\blacktriangleright A = A_{sys} \uplus A_{env}$

$$\Sigma_{\textit{sys}} = A_{\textit{sys}} \times \left(\mathbb{P}_{\textit{sys}} \cup \mathbb{P}_{\textit{se}} \right)$$

System and Environment processes $\blacktriangleright \mathbb{P} = (\mathbb{P}_{sys}, \mathbb{P}_{env}, \mathbb{P}_{se})$ with \mathbb{P}_{θ} finite set of processes

Executions II: System vs Environment

System actions and Environment actions $\blacktriangleright A = A_{svs} \uplus A_{env}$

System and Environment processes $\blacktriangleright \mathbb{P} = (\mathbb{P}_{sys}, \mathbb{P}_{env}, \mathbb{P}_{se})$ with \mathbb{P}_{θ} finite set of processes

$$\begin{split} \Sigma_{\textit{sys}} &= A_{\textit{sys}} \times (\mathbb{P}_{\textit{sys}} \cup \mathbb{P}_{\textit{se}}) \\ \Sigma_{\textit{env}} &= A_{\textit{env}} \times (\mathbb{P}_{\textit{env}} \cup \mathbb{P}_{\textit{se}}) \end{split}$$

Soutenance de thèse : Synthesis for Parameterized Systems

Executions II: System vs Environment

System actions and Environment actions $\blacktriangleright A = A_{svs} \uplus A_{env}$

System and Environment processes $\blacktriangleright \mathbb{P} = (\mathbb{P}_{sys}, \mathbb{P}_{env}, \mathbb{P}_{se})$ with \mathbb{P}_{θ} finite set of processes

Execution = word over $\Sigma_{sys} \cup \Sigma_{env}$

$$\begin{array}{c} \mathbf{s} \\ 1 \\ 2 \\ 6 \\ 7 \\ 8 \\ \mathbf{se} \end{array} \stackrel{\mathbf{e}}{\mathbf{a}} \xrightarrow{\mathbf{b}}{\mathbf{b}} \xrightarrow{\mathbf{d}}{\mathbf{c}} \xrightarrow{\mathbf{c}}{\mathbf{c}} \xrightarrow{\mathbf{a}}{\mathbf{c}} \xrightarrow{\mathbf{c}}{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}}{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}} \xrightarrow{\mathbf{c}}} \xrightarrow{\mathbf{c}} \xrightarrow$$

$$\begin{split} \Sigma_{sys} &= A_{sys} \times (\mathbb{P}_{sys} \cup \mathbb{P}_{se}) \\ \Sigma_{env} &= A_{env} \times (\mathbb{P}_{env} \cup \mathbb{P}_{se}) \end{split}$$

► Asynchronous synthesis problem

Strategy for System

 $f: \Sigma^* \to \Sigma_{sys} \cup \{\varepsilon\}$

► Asynchronous synthesis problem

Strategy for System

 $f: \Sigma^* \to \Sigma_{\mathit{sys}} \cup \{\varepsilon\}$

An execution is

- f-compatible if System actions follow f
- f-fair if Environment does not always block System

► Asynchronous synthesis problem

Strategy for System

 $f: \Sigma^* \to \Sigma_{sys} \cup \{\varepsilon\}$

An execution is

- f-compatible if System actions follow f
- f-fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all $f\mbox{-compatible},\ f\mbox{-fair}$ executions are in S

► Asynchronous synthesis problem

Strategy for System

 $f: \Sigma^* \to \Sigma_{sys} \cup \{\varepsilon\}$

An execution is

- f-compatible if System actions follow f
- f-fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f-compatible, f-fair executions are in S?

First order logic I: Definition

Example on words

 $\varphi = \forall x. (req(x) \Rightarrow \exists y. (y > x \land ack(y)))$

First order logic I: Definition

Example on words

 $\varphi = \forall x. (req(x) \Rightarrow \exists y.(y > x \land ack(y)))$ "every *req* is eventually followed by an *ack*"

First order logic I: Definition

Example on words

 $\varphi = \forall x. (req(x) \Rightarrow \exists y.(y > x \land ack(y)))$ "every *req* is eventually followed by an *ack*"

- req ack req req ack $\models \varphi$
- req req ack req $\not\models \varphi$

Example on words

$$\varphi = \forall x. (req(x) \Rightarrow \exists y. (y > x \land ack(y)))$$

"every *req* is eventually followed by an *ack*"

• req ack req req ack
$$\models \varphi$$

• req req ack req
$$\not\models \varphi$$

Syntax for FO on words

Basic formulas: $a(x) | x = y | x < y | \operatorname{succ}(x, y)$ $a \in A$ Connectors and quantifiers: $\neg, \lor, \land, \Rightarrow, \exists, \forall$

Examples on data words

 $\varphi = \forall x.(req(x) \Rightarrow \exists y.(y \sim x \land y > x \land ack(y)))$ "every *req* is eventually followed by an *ack* on the same process"

Examples on data words $\varphi = \forall x.(req(x) \Rightarrow \exists y.(y \sim x \land y > x \land ack(y)))$ "every *req* is eventually followed by an *ack* on the same process"

- $(req, 1)(req, 3)(ack, 1)(req, 6)(ack, 6)(ack, 3) \models \varphi$
- $(req, 1)(ack, 2)(req, 1)(ack, 2) \cdots \not\models \varphi$

Examples on data words $\varphi = \forall x.(req(x) \Rightarrow \exists y.(y \sim x \land y > x \land ack(y)))$ "every *req* is eventually followed by an *ack* on the same process" • (*req*, 1)(*req*, 3)(*ack*, 1)(*req*, 6)(*ack*, 6)(*ack*, 3) \models \varphi

•
$$(req, 1)(ack, 2)(req, 1)(ack, 2) \cdots \not\models \varphi$$

Syntax for FO on datawords

Basic formulas: $a(x) | x = y | x < y | \operatorname{succ}(x, y) | \theta(x) | x \sim y$ $a \in A, \theta \in \{sys, env, se\}$ Connectors and quantifiers: $\neg, \lor, \land, \Rightarrow, \exists, \forall$

First order logic II: Satisfiability

• Specification
$$S_{\varphi} = \{w \mid w \models \varphi\}$$

First order logic II: Satisfiability

• Specification
$$S_{\varphi} = \{w \mid w \models \varphi\}$$

Satisfiability

I: A first order formula φ O: $S_{\varphi} \neq \emptyset$?

First order logic II: Satisfiability

• Specification
$$S_{\varphi} = \{w \mid w \models \varphi\}$$

Satisfiability

I: A first order formula φ O: $S_{\varphi} \neq \emptyset$?

▶ Decidable for words (but non-elementary) [Büchi, 60]

First order logic II: Satisfiability

• Specification
$$S_{\varphi} = \{w \mid w \models \varphi\}$$

${\sf Satisfiability}$

I: A first order formula φ O: $S_{\varphi} \neq \emptyset$?

- ▶ Decidable for words (but non-elementary) [Büchi, 60]
- ▶ Undecidable for data words [Neven et al., 04]

► Only important point for synthesis is number of processes, not concrete identities!

► Only important point for synthesis is number of processes, not concrete identities!

Winning triples for φ

 $(n_{sys}, n_{env}, n_{se}) \in \mathbb{N}^3$ is a winning triple if there is a winning strategy for data words limited to $(n_{sys}, n_{env}, n_{se})$ processes

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─ Synthesis
└─ The Synthesis Problem
```

► Only important point for synthesis is number of processes, not concrete identities!

Winning triples for φ

 $(n_{sys}, n_{env}, n_{se}) \in \mathbb{N}^3$ is a winning triple if there is a winning strategy for data words limited to $(n_{sys}, n_{env}, n_{se})$ processes

Intersection of set of winning triples $Win(\varphi)$ with:

 $\mathbb{N}\times\{0\}\times\{0\}\colon$ only System processes (satisfiability)

► Only important point for synthesis is number of processes, not concrete identities!

Winning triples for φ

 $(n_{sys}, n_{env}, n_{se}) \in \mathbb{N}^3$ is a winning triple if there is a winning strategy for data words limited to $(n_{sys}, n_{env}, n_{se})$ processes

Intersection of set of winning triples $Win(\varphi)$ with:

 $\{0\}\times\{0\}\times\mathbb{N}\colon$ each process controlled by both System and Environment

► Only important point for synthesis is number of processes, not concrete identities!

Winning triples for φ

 $(n_{sys}, n_{env}, n_{se}) \in \mathbb{N}^3$ is a winning triple if there is a winning strategy for data words limited to $(n_{sys}, n_{env}, n_{se})$ processes

Intersection of set of winning triples $Win(\varphi)$ with:

 $\mathbb{N} \times \{k_{env}\} \times \{k_{se}\}$: constant number of Environment and mixed processes, but unboundedly many System processes

Parameterized synthesis problem

 $\mathsf{SYNTH}(\mathcal{F}, (\mathcal{N}_{sys}, \mathcal{N}_{env}, \mathcal{N}_{se}))$

I: Alphabet $A = A_{sys} \uplus A_{env}$, formula $\varphi \in \mathcal{F}$ over AO: $Win(\varphi) \cap (\mathcal{N}_{sys} \times \mathcal{N}_{env} \times \mathcal{N}_{se}) \neq \emptyset$?
Example 1 $\varphi_1 = \forall x.(req(x) \Rightarrow \exists y.(y \sim x \land y > x \land ack(y)))$ • $A_{sys} = \{ack\},$ • $A_{env} = \{req\},$ • $(\mathcal{N}_{sys}, \mathcal{N}_{env}, \mathcal{N}_{se}) = (\{0\}, \{0\}, \mathbb{N})$

Example 1 $\varphi_1 = \forall x.(req(x) \Rightarrow \exists y.(y \sim x \land y > x \land ack(y)))$ • $A_{sys} = \{ack\},$ • $A_{env} = \{req\},$ • $(\mathcal{N}_{sys}, \mathcal{N}_{env}, \mathcal{N}_{se}) = (\{0\}, \{0\}, \mathbb{N})$

▶ (0,0,k) is a winning triple for φ_1 for all $k \in \mathbb{N}$:

Winning strategy

f(w) = (ack, i) s.t. $\sigma = (req, i)$ is the first pending req of w

▶ No winning triple unless $k_{env} = k_{se} = 0!$

```
Soutenance de thèse : Synthesis for Parameterized Systems
└Synthesis
└FO<sup>2</sup>
```



```
Soutenance de thèse : Synthesis for Parameterized Systems \Box_{FO}^2
```

\blacktriangleright FO²: restrict to two variable names

Examples

•
$$\exists x, y, z. \neg (x \sim y) \land \neg (y \sim z) \land \neg (x \sim z) \notin FO^2$$

```
Soutenance de thèse : Synthesis for Parameterized Systems \Box_{FO}^2
```

\blacktriangleright FO²: restrict to two variable names

Examples

•
$$\exists x, y, z. \neg (x \sim y) \land \neg (y \sim z) \land \neg (x \sim z) \notin \mathrm{FO}^2$$

• $\exists x.a(x) \land (\exists y.x < y \land a(y) \land (\exists x.y < x \land a(x))) \in FO^2$

```
Soutenance de thèse : Synthesis for Parameterized Systems
└Synthesis
└FO<sup>2</sup>
```

\blacktriangleright FO²: restrict to two variable names

Examples

•
$$\exists x, y, z. \neg (x \sim y) \land \neg (y \sim z) \land \neg (x \sim z) \notin \mathrm{FO}^2$$

•
$$\exists x.a(x) \land (\exists y.x < y \land a(y) \land (\exists x.y < x \land a(x))) \in \mathrm{FO}^2$$

► Satisfiability is decidable! [Bojanczyk et al., 06]

```
Soutenance de thèse : Synthesis for Parameterized Systems \Box_{\rm FO}^2
```

Results for FO^2

Theorem [FoSSaCS 20]

 $\mathsf{SYNTH}(\mathrm{FO}^2,(\{0\},\{0\},\mathbb{N}))$ is undecidable

```
Soutenance de thèse : Synthesis for Parameterized Systems \Box_{\rm FO}^2
```

```
Results for \mathrm{FO}^2
```

```
Theorem [FoSSaCS 20]
```

 $\mathsf{SYNTH}(\mathrm{FO}^2,(\{0\},\{0\},\mathbb{N})) \text{ is undecidable}$

Proof

Adapt proof of [Figueira and Praveen, 18] to reduce halting problem for D2CM:

- Counters value encoded by number of processes with an action from System but not Environment (and vice versa)
- $\bullet~{\rm FO^2}$ formula to enforce simulation of a run

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

▶ $FO[\sim] = FO$ without < and succ

 $\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$

```
Soutenance de thèse : Synthesis for Parameterized Systems 
 \hfill \label{eq:Synthesis} 
 \hfill \label{eq:Synthesis} 
 \hfill \fill \fill
```

▶ $FO[\sim] = FO$ without < and succ

$$\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$$

Some remarks

• No way to specify an order

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

▶ $FO[\sim] = FO$ without < and succ

$$\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$$

Some remarks

- No way to specify an order
- $\bullet\,$ Can count letters on a given class up to some bound B

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

▶ $FO[\sim] = FO$ without < and succ

$$\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$$

Some remarks

- No way to specify an order
- $\bullet\,$ Can count letters on a given class up to some bound B
- Can count such classes up to some number

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

▶ $FO[\sim] = FO$ without < and succ

$$\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$$

Some remarks

- No way to specify an order
- Can count letters on a given class up to some bound B
- Can count such classes up to some number

Roadmap

• Establish normal form for $FO[\sim]$

```
Soutenance de thèse : Synthesis for Parameterized Systems \[ \] Synthesis \[ \] Synthesis \[ \] FO[\sim] \]
```

▶ $FO[\sim] = FO$ without < and succ

$$\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$$

Some remarks

- No way to specify an order
- Can count letters on a given class up to some bound B
- Can count such classes up to some number

Roadmap

- Establish normal form for $FO[\sim]$
- 2 Translate to game formalism

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

▶ $FO[\sim] = FO$ without < and succ

$$\exists x.bcast(x) \land \forall y.(y \not\sim x \Rightarrow \exists z.(z \sim y \land rcv(z)))$$

Some remarks

- No way to specify an order
- Can count letters on a given class up to some bound B
- Can count such classes up to some number

Roadmap

- Establish normal form for $FO[\sim]$
- 2 Translate to game formalism
- Ose games to prove results

Soutenance de thèse : Synthesis for Parameterized Systems $\[\]$ Synthesis $\[\]$ Synthesis $\[\]$ FO[\sim]

Normal form

Normal form [FoSSaCS 20]

There is a bound $B\in\mathbb{N}$ s.t. φ is equivalent to a disjunction of conjunctions of formulas of the form

 $\exists^{\bowtie m} y.(\theta(y) \land \psi_{\mathrm{B},\ell}(y))$

```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

Normal form

Normal form [FoSSaCS 20]

There is a bound $B\in\mathbb{N}$ s.t. φ is equivalent to a disjunction of conjunctions of formulas of the form

$\exists^{\bowtie m} y.(\theta(y) \land \psi_{\mathrm{B},\ell}(y))$

 \equiv "There are \Join *m* processes of type heta with local state ℓ ."

Normal form

Normal form [FoSSaCS 20]

There is a bound $B\in\mathbb{N}$ s.t. φ is equivalent to a disjunction of conjunctions of formulas of the form

$\exists^{\bowtie m} y.(\theta(y) \land \psi_{\mathrm{B},\ell}(y))$

 \equiv "There are $\bowtie m$ processes of type heta with local state ℓ ."

Normal form

Normal form [FoSSaCS 20]

There is a bound $B\in\mathbb{N}$ s.t. φ is equivalent to a disjunction of conjunctions of formulas of the form

$\exists^{\bowtie m} y.(\theta(y) \land \psi_{\mathrm{B},\ell}(y))$

≡ "There are $\bowtie m$ processes of type θ with local state ℓ." ► Local state of a process $\ell : A \to \{0, ..., B\}$

```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

Game framework for $FO[\sim]$ formulas

 $\mathcal{G} = (A, B, \mathfrak{F})$ where $A = A_{sys} \uplus A_{env}$, B > 0, and \mathfrak{F} is the acceptance condition

```
Soutenance de thèse : Synthesis for Parameterized Systems 
 \hfill \label{eq:Synthesis} 
 \hfill \fill \
```

Arena for $A_{sys} = \{a\}, A_{env} = \{b\}, B = 2$: local states


```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

Configuration c maps local states to number of tokens (default: 0)


```
Soutenance de thèse : Synthesis for Parameterized Systems
└─ Synthesis
└─ FO[~]
```

Goal g = set of constraints for local states (default: ≥ 0)


```
Soutenance de thèse : Synthesis for Parameterized Systems
└─ Synthesis
└─ FO[~]
```

Goal g = set of constraints for local states (default: ≥ 0)


```
Soutenance de thèse : Synthesis for Parameterized Systems
└─ Synthesis
└─ FO[~]
```

Goal g = set of constraints for local states (default: ≥ 0) Acceptance condition \mathfrak{F} = disjunction of goals


```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

```
Play on \mathcal{G}: System's turn
```



```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

Play on \mathcal{G} : Environment's turn


```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

```
Play on \mathcal{G}: System's turn
```



```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

Play on \mathcal{G} : Environment's turn


```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

```
Play on \mathcal{G}: System's turn
```



```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

 \blacktriangleright Asynchronous \rightarrow turn-based game

No way to specify an order with $FO[\sim]$

```
Soutenance de thèse : Synthesis for Parameterized Systems \[\] Synthesis \[\] Synthesis \[\] FO[\sim]
```

 \blacktriangleright Asynchronous \rightarrow turn-based game

No way to specify an order with $FO[\sim]$

(req, 1)(req, 2)(ack, 1)(req, 3)(ack, 2)(ack, 3)

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

 \blacktriangleright Asynchronous \rightarrow turn-based game

No way to specify an order with $FO[\sim]$

(req, 1)(req, 2)(ack, 1)(req, 3)(ack, 2)(ack, 3) $\equiv (req, 1)(ack, 1)(req, 2)(ack, 2)(req, 3)(ack, 3)$

```
Soutenance de thèse : Synthesis for Parameterized Systems
└─Synthesis
└─FO[~]
```

 \blacktriangleright Asynchronous \rightarrow turn-based game

No way to specify an order with $FO[\sim]$

 $(req, 1)(req, 2)(ack, 1)(req, 3)(ack, 2)(ack, 3) \equiv (req, 1)(ack, 1)(req, 2)(ack, 2)(req, 3)(ack, 3)$

There is a bound $B\in\mathbb{N}$ s.t. φ is equivalent to a disjunction of conjunctions of formulas of the form

 $\exists^{\bowtie m} y.(\theta(y) \land \psi_{\mathrm{B},\ell}(y))$

 \equiv "There are $\bowtie m$ processes of type heta with local state ℓ ."
```
Soutenance de thèse : Synthesis for Parameterized Systems 
\hfill \label{eq:Synthesis} 
\hfill \fill \
```

Results [FoSSaCS 20]

Undecidability SYNTH(FO[\sim], ({0}, {0}, \mathbb{N})) is undecidable

```
Soutenance de thèse : Synthesis for Parameterized Systems 
\hfill \label{eq:Synthesis} 
\hfill \fill \
```

Undecidability
SYNTH(
$$FO[\sim], (\{0\}, \{0\}, \mathbb{N})$$
) is undecidable

▶ Proof idea: encoding 2CM configuration

 $(s, c, c') \xrightarrow{t} \dots$

Soutenance de thèse : Synthesis for Parameterized Systems $\hfill \label{eq:Synthesis}$ $\hfill \fill \$

Results [FoSSaCS 20]

Positive result SYNTH(FO[\sim], ($\mathbb{N}, \{k_{env}\}, \{k_{se}\}$)) is decidable

Soutenance de thèse : Synthesis for Parameterized Systems $\hfill \label{eq:Synthesis}$ $\hfill \fill \$

Positive result SYNTH(FO[\sim], ($\mathbb{N}, \{k_{env}\}, \{k_{se}\}$)) is decidable

Cutoff

$$\mathbf{k} = (k_{sys}, k_{env}, k_{se})$$
 is a cutoff wrt $(\mathcal{N}_{sys}, \mathcal{N}_{env}, \mathcal{N}_{se})$ for φ if either:

• for all
$$\mathrm{k}'\geq\mathrm{k},\ \mathrm{k}'\in\mathit{Win}(arphi)$$

• for all $k' \ge k$, $k' \notin Win(\varphi)$

Soutenance de thèse : Synthesis for Parameterized Systems $\[\]$ Synthesis $\[\]$ Synthesis $\[\]$ FO[\sim]

Positive result SYNTH(FO[\sim], ($\mathbb{N}, \{k_{env}\}, \{k_{se}\}$)) is decidable

Cutoff

$$\mathbf{k} = (k_{sys}, k_{env}, k_{se})$$
 is a cutoff wrt $(\mathcal{N}_{sys}, \mathcal{N}_{env}, \mathcal{N}_{se})$ for φ if either:

• for all
$$\mathbf{k}' \geq \mathbf{k}, \ \mathbf{k}' \in \mathit{Win}(\varphi)$$

• for all
$$\mathrm{k}' \geq \mathrm{k}, \ \mathrm{k}' \notin \mathit{Win}(arphi)$$

• Existence of cutoff \Rightarrow Synthesis decidable!

Soutenance de thèse : Synthesis for Parameterized Systems

Conclusion

Summary of main results:

Control of dynamic parameterized systems

Round-bounded control of parameterized pushdown systems is decidable

Soutenance de thèse : Synthesis for Parameterized Systems

Conclusion

Summary of main results:

Control of dynamic parameterized systems

Round-bounded control of parameterized pushdown systems is decidable

Synthesis of fixed parameterized systems

- \bullet Synthesis of FO^2 and $\mathrm{FO}[\sim]$ undecidable for mixed processes
- \bullet Synthesis of $\mathrm{FO}[\sim]$ decidable when Environment affects a bounded number of processes

Perspectives

Future works on control

- Other under-approximations (context, ...)
- Specifications given not as a Reach objective

Perspectives

Future works on control

- Other under-approximations (context, ...)
- Specifications given not as a Reach objective

Future works on synthesis

- Cases left open (FO²[\sim], ...)
- Less centralized synthesis

Perspectives

Future works on control

- Other under-approximations (context, ...)
- Specifications given not as a Reach objective

Future works on synthesis

- Cases left open (FO²[\sim], ...)
- Less centralized synthesis

Thank you for your attention!