Benedikt Bollig¹ Mathieu Lehaut² Nathalie Sznajder²

¹CNRS, LSV & ENS Paris-Saclay, Université Paris-Saclay, France

²Sorbonne Université, CNRS, LIP6/MoVe, F-75005 Paris, France

Midi de Move 25/10/2018

Parameterized system?

Paremeterized System

Distributed system with no fixed number of processes

Examples

Mobile networks, distributed algorithms, drone swarms, ...

Parameterized system?

Paremeterized System

Distributed system with no fixed number of processes

Examples

Mobile networks, distributed algorithms, drone swarms, ...

 \Rightarrow Should work for any number of processes!

Reachability vs Control

Systems interact with environment: User inputs, Drone sensors, ...

Reachability vs Control

Systems interact with environment: User inputs, Drone sensors, ...

Reachability

Is there a correct behavior?

Control

Can we force every behavior to be correct?

Example: Scheduler model (1/2)

Behavior we want to model:

- 1. Scheduler sends requests and starts processes,
- 2. Then each process performs the requested tasks,
- 3. Then each process stops.

Round-bounded behaviors

Even Reachability is undecidable!

```
Round-bounded behaviors
```

```
Even Reachability is undecidable!
```

```
Restriction: rounds [La Torre et al., 2010]
```

One round:

```
1111222333334555...
```

Round-bounded behaviors

```
Even Reachability is undecidable!
```

```
Restriction: rounds [La Torre et al., 2010]
```

One round:

```
1111222333334555...
```

```
11112222555888...
```

Round-bounded behaviors

```
Even Reachability is undecidable!
```

```
Restriction: rounds [La Torre et al., 2010]
One round:

✓ 1 1 1 1 2 2 2 3 3 3 3 3 4 5 5 5 ...

✓ 1 1 1 1 2 2 2 2 2 5 5 5 8 8 8 ...

X 1 1 1 2 2 3 3 1 4 4 6 ...
```

Round-bounded behaviors

```
Even Reachability is undecidable!
```

```
Restriction: rounds [La Torre et al., 2010]
One round:

✓ 1 1 1 1 2 2 2 3 3 3 3 3 4 5 5 5 ...

✓ 1 1 1 1 2 2 2 2 2 5 5 5 8 8 8 ...

X 1 1 1 2 2 3 3 1 4 4 6 ...

N rounds:

1 1 1 2 3 4 4 | 1 3 3 4 5 | 3 3 5 6 6 6 7 | ...
```

Round-bounded behaviors

```
Even Reachability is undecidable!
```

```
Restriction: rounds [La Torre et al., 2010]
One round:

✓ 1 1 1 1 2 2 2 3 3 3 3 3 4 5 5 5 ...

✓ 1 1 1 1 2 2 2 2 2 5 5 5 8 8 8 ...

X 1 1 1 2 2 3 3 1 4 4 6 ...

N rounds:

1 1 1 2 3 4 4 | 1 3 3 4 5 | 3 3 5 6 6 6 7 | ...
```

Round-bounded Reachability is PSPACE-complete.

Control: Parameterized Pushdown Games

Control: Parameterized Pushdown Games

Control: Parameterized Pushdown Games

Control problem

Is there a winning strategy for the Controller?

Main result

Decidable, but inherently non-elementary.

Decidability

Decidability

Decidability

Decidability

Decidability

Decidability

Reduction to *phase-bounded multi-pushdown games* [Atig et al., 2017]

Phase-bounded

Phase: pop only from one stack, push unrestricted.

Hardness (1/2)

Reduction of satisfiability of FO(<) on finite words. [Stockmeyer, 1970]

Example: $\exists x. \forall y. a(x) \land (b(y) \Rightarrow y < x)$ $\checkmark a b c b a c c a$ X a a b a b c

Hardness (1/2)

Reduction of satisfiability of FO(<) on finite words. [Stockmeyer, 1970]

Example: $\exists x. \forall y. a(x) \land (b(y) \Rightarrow y < x)$ $\checkmark a b c b a c c a$ X a a b a b c

Syntax

$$\begin{array}{lll} t & ::= & \mathsf{a}(x) \mid x < y \mid x = y \\ \varphi & ::= & t \mid \neg t \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists x.\varphi \mid \forall x.\varphi \end{array}$$

with $x, y \in Var$ and $a \in \Sigma$.

Conclusion

Round-bounded is an interesting restriction for parameterized pushdown systems, and leads to decidability for both Reachability and Control.

Conclusion

Round-bounded is an interesting restriction for parameterized pushdown systems, and leads to decidability for both Reachability and Control.

Future works:

- Relax round-bounded restriction (not fixed order)
- Use game frameworks for model-checking properties for data logic

• ...

Conclusion

Round-bounded is an interesting restriction for parameterized pushdown systems, and leads to decidability for both Reachability and Control.

Future works:

- Relax round-bounded restriction (not fixed order)
- Use game frameworks for model-checking properties for data logic

o ...

Thanks for listening, questions?