e
Synthesis of Distributed Implementations from Centralized Specifications

Synthesis of Distributed Implementations from
Centralized Specifications

Mathieu Lehaut
Joint work in progress with Daniel Hausmann and Nir Piterman

FM Retreat, 12/12/2023

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

What is synthesis actually?

Synthesis Problem

Input: A specification ¢
Output: A program P satisfying ¢

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

What is synthesis actually?

Synthesis Problem

Input: A specification ¢
Output: A program P satisfying ¢

» Great if possible, but very hard.

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

What is synthesis actually?

Synthesis Problem

Input: A specification ¢
Output: A program P satisfying ¢

3

» Great if possible, but very hard.

» Distributed systems makes it even
harder! =)
» Specifications are centralized, -

programs are distributed.

K

U
U
U

:
]

U

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

R

R

o

el

o

/
\

o

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

Proc ={B,C,p1,p2,p3,91,92} CH ={o,B,v}

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

L={a-f-y-a [,

Proc ={B,C,p1,p2,p3,q1,q2} CH ={a,B,v} }

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

L={a-f-y-a [,
a-y-pra-f-7,

Proc ={B,C,p1,p2,p3,q1,q2} CH ={a,B,v} }

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

L={a-f-y-a [,
a-y-pra-f-7,
a-feoy-a-y-p,

Proc={B,C,p1,02,03,91,q2} CH={0,B,} a-y-Bra-y '5}

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Example of a distributed protocol

L={a-f-y-a [,
a-v-fra-f-7,
a-feoy-a-y-p,

Proc = {B,C,p1,02,03,q1,q2} CH={o,B,y} 04'7'5'04'7'5}

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

Cc:1

pr:1

Actual state; 1

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

p=«
B:1%2
C:13%52

pr:1

Actual state: 1 =5 2

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

C:15%2

ke

=
—_
1=
w

Actual state: 1 =5 2 ﬁ> 3

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

Actual state: 1 =5 2 ﬁ> 355

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

Actual state: 1 = 2 ﬁ>3l>5 X6

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Distributed view

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Zielonka's distributivity theorem

Theorem [Zielonka, 1987]

Every diamond-closed language can be recognized by an
asynchronous automaton.

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Zielonka's distributivity theorem

Theorem [Zielonka, 1987]

Every diamond-closed language can be recognized by an
asynchronous automaton.

» Complexity: exp. in |Proc|, poly. in |A| [Genest et al., 2010]

Synthesis of Distributed Implementations from Centralized Specifications

L Introduction

Zielonka's distributivity theorem

Theorem [Zielonka, 1987]

Every diamond-closed language can be recognized by an
asynchronous automaton.

» Complexity: exp. in |Proc|, poly. in |A| [Genest et al., 2010]
» On trees: O(|.A|?) construction [Krishna & Muscholl, 2013]

Synthesis of Distributed Implementations from Centralized Specifications

LAdcling reconfiguration

Reconfiguration

» What if processes could change dynamically the channels they
listen to? Applications in:

@ Swarm protocols (connected based on distance)
@ Privacy (need-to-know)

@ Energy constraints (turn off communications if not needed)

Synthesis of Distributed Implementations from Centralized Specifications

LAdcling reconfiguration

Reconfiguration

» What if processes could change dynamically the channels they
listen to? Applications in:

@ Swarm protocols (connected based on distance)
@ Privacy (need-to-know)

@ Energy constraints (turn off communications if not needed)

» Adapt Zielonka's result to this setting:
@ Input language contains instructions for reconfiguration

@ Output automaton should implement them only with local
information

Synthesis of Distributed Implementations from Centralized Specifications

LAdding reconfiguration

Our result

Theorem

Every diamond-closed language with reconfiguration operations?
and over a tree-like communication architecture! can be recognized
by a reconfigurable® asynchronous automaton.

Synthesis of Distributed Implementations from Centralized Specifications

LAdding reconfiguration

Our result

Theorem

Every diamond-closed language with reconfiguration operations?
and over a tree-like communication architecture! can be recognized
by a reconfigurable® asynchronous automaton.

Synthesis of Distributed Implementations from Centralized Specifications

LAdcling reconfiguration

Our result

Theorem

Every diamond-closed language with reconfiguration operations?
and over a tree-like communication architecture! can be recognized
by a reconfigurable® asynchronous automaton.

2 : connecting, disconnecting, local

change of position in the tree

Synthesis of Distributed Implementations from Centralized Specifications

LAdcling reconfiguration

Our result

Theorem

Every diamond-closed language with reconfiguration operations?

and over a tree-like communication architecture! can be recognized
by a reconfigurable® asynchronous automaton.

2 : connecting, disconnecting, local

change of position in the tree

3. set of channels listened to

depends on state of process

Synthesis of Distributed Implementations from Centralized Specifications

LAdcling reconfiguration

Our result

Theorem

Every diamond-closed language with reconfiguration operations?

and over a tree-like communication architecture! can be recognized
by a reconfigurable® asynchronous automaton.

2 : connecting, disconnecting, local

change of position in the tree

3. set of channels listened to

depends on state of process

» Complexity: O(\A\2 2ICHI)

Synthesis of Distributed Implementations from Centralized Specifications
|—(:onclusion

Conclusion

Summary

Adapted tree construction for Zielonka's distributivity theorem to
the reconfigurable setting.

Synthesis of Distributed Implementations from Centralized Specifications

LConcIusion

Conclusion

Summary

Adapted tree construction for Zielonka's distributivity theorem to
the reconfigurable setting.

Future works
Get rid of the tree restriction! (not easy...)

Synthesis of Distributed Implementations from Centralized Specifications

LConcIusion

Conclusion

Summary

Adapted tree construction for Zielonka's distributivity theorem to
the reconfigurable setting.

Future works
Get rid of the tree restriction! (not easy...)

Thanks, questions?

	Introduction
	Adding reconfiguration
	Conclusion

