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L Introduction

What is synthesis actually?

Synthesis Problem

Input: A specification ¢
Output: A program P satisfying ¢
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» Great if possible, but very hard.

» Distributed systems makes it even
harder! =)
» Specifications are centralized, -

programs are distributed.
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Example of a distributed protocol

L={a-f-y-a [,
a-y-pra-f-7,
a-feoy-a-y-p,

Proc={B,C,p1,02,03,91,q2}  CH={0,B,} a-y-Bra-y '5}
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Example of a distributed protocol

L={a-f-y-a [,
a-v-fra-f-7,
a-feoy-a-y-p,

Proc = {B,C,p1,02,03,q1,q2}  CH={o,B,y} 04'7'5'04'7'5}
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Actual state: 1 = 2 ﬁ>3l>5 X6
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Zielonka's distributivity theorem

Theorem [Zielonka, 1987]

Every diamond-closed language can be recognized by an
asynchronous automaton.

» Complexity: exp. in |Proc|, poly. in |A| [Genest et al., 2010]
» On trees: O(|.A|?) construction [Krishna & Muscholl, 2013]
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LAdcling reconfiguration

Reconfiguration

» What if processes could change dynamically the channels they
listen to? Applications in:

@ Swarm protocols (connected based on distance)
@ Privacy (need-to-know)

@ Energy constraints (turn off communications if not needed)

» Adapt Zielonka's result to this setting:
@ Input language contains instructions for reconfiguration

@ Output automaton should implement them only with local
information
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Our result

Theorem

Every diamond-closed language with reconfiguration operations?

and over a tree-like communication architecture! can be recognized
by a reconfigurable® asynchronous automaton.

2 : connecting, disconnecting, local

change of position in the tree

3. set of channels listened to

depends on state of process

» Complexity: O(\A\2 2ICHI)
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Conclusion

Summary

Adapted tree construction for Zielonka's distributivity theorem to
the reconfigurable setting.

Future works
Get rid of the tree restriction! (not easy...)

Thanks, questions?
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