
1/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Parameterized Synthesis for Fragments of
First-Order Logic over Data Words

Mathieu Lehaut0

with Béatrice Bérard1, Benedikt Bollig2, Tali Sznajder1

0University of Gothenburg, Gothenburg, Sweden
1Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

2CNRS, LSV & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

16/06/2021

2/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

The context

Distributed systems everywhere:

And bugs too.

2/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

The context

Distributed systems everywhere:

And bugs too.

2/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

The context

Distributed systems everywhere:

And bugs too.

2/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

The context

Distributed systems everywhere:

And bugs too.

2/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

The context

Distributed systems everywhere:

And bugs too.

3/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

What kind of distributed systems?

Parameterized systems

Distributed systems with number of processes not known in advance

Open systems

Each process interacts with uncontrollable environment
(sensors, operator inputs, environmental conditions, ...)

3/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

What kind of distributed systems?

Parameterized systems

Distributed systems with number of processes not known in advance

Open systems

Each process interacts with uncontrollable environment
(sensors, operator inputs, environmental conditions, ...)

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

M

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

M

a

b

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

M

a

b

ϕ

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

M

a

b

ϕ

X

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

M

a

b

ϕ

X

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

b

b

ϕ

M2

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

b

b

ϕ

M2

X

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

b

b

ϕ

M2

X

4/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

A technique of veri�cation

Model checking [Clarke, Emerson, Sifakis]

I: A speci�cation S , a modelM
O:M |= S?

Model-checking tool
S

ϕ

Mn

?

5/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

What about synthesis?

Synthesis

I: A speci�cation S

O:M s.t. M |= S if it exists

I But �rst, need to de�ne possible executions.

5/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

What about synthesis?

Synthesis

I: A speci�cation S
O:M s.t. M |= S if it exists

I But �rst, need to de�ne possible executions.

5/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Introduction

What about synthesis?

Synthesis

I: A speci�cation S
O:M s.t. M |= S if it exists

I But �rst, need to de�ne possible executions.

6/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions I: Data words

Behaviors for A = {req, ack}
1 process: w = req ack req ack

�xed number of processes: w = req1req3ack1ack3

unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack , 6)(ack, 3)

Data words [Bojanczyk et al., 2006]

A: �nite alphabet (actions),

D: in�nite set of data values (process identities)

Data word: (in)�nite word over A×D

6/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions I: Data words

Behaviors for A = {req, ack}
1 process: w = req ack req ack

�xed number of processes: w = req1req3ack1ack3

unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack, 1)(req, 6)(ack , 6)(ack, 3)

Data words [Bojanczyk et al., 2006]

A: �nite alphabet (actions),

D: in�nite set of data values (process identities)

Data word: (in)�nite word over A×D

6/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions I: Data words

Behaviors for A = {req, ack}
1 process: w = req ack req ack

�xed number of processes: w = req1req3ack1ack3

unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack , 1)(req, 6)(ack , 6)(ack , 3)

Data words [Bojanczyk et al., 2006]

A: �nite alphabet (actions),

D: in�nite set of data values (process identities)

Data word: (in)�nite word over A×D

6/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions I: Data words

Behaviors for A = {req, ack}
1 process: w = req ack req ack

�xed number of processes: w = req1req3ack1ack3

unknown (not bounded) number of processes:
w = (req, 1)(req, 3)(ack , 1)(req, 6)(ack , 6)(ack , 3)

Data words [Bojanczyk et al., 2006]

A: �nite alphabet (actions),

D: in�nite set of data values (process identities)

Data word: (in)�nite word over A×D

7/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions II: System vs Environment
System actions and Environment actions
I A = Asys] Aenv

System and Environment processes
I P = (Psys ,Penv ,Pse)
with Pθ �nite set of processes

Σsys = Asys × (Psys ∪ Pse)
Σenv = Aenv × (Penv ∪Pse)

P-Execution
Execution = word over Σsys ∪ Σenv

7/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions II: System vs Environment
System actions and Environment actions
I A = Asys] Aenv

System and Environment processes
I P = (Psys ,Penv ,Pse)
with Pθ �nite set of processes

Σsys = Asys × (Psys ∪ Pse)
Σenv = Aenv × (Penv ∪Pse)

P-Execution
Execution = word over Σsys ∪ Σenv

7/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions II: System vs Environment
System actions and Environment actions
I A = Asys] Aenv

System and Environment processes
I P = (Psys ,Penv ,Pse)
with Pθ �nite set of processes

Σsys = Asys × (Psys ∪ Pse)

Σenv = Aenv × (Penv ∪Pse)

P-Execution
Execution = word over Σsys ∪ Σenv

7/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions II: System vs Environment
System actions and Environment actions
I A = Asys] Aenv

System and Environment processes
I P = (Psys ,Penv ,Pse)
with Pθ �nite set of processes

Σsys = Asys × (Psys ∪ Pse)
Σenv = Aenv × (Penv ∪Pse)

P-Execution
Execution = word over Σsys ∪ Σenv

7/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions II: System vs Environment
System actions and Environment actions
I A = Asys] Aenv

System and Environment processes
I P = (Psys ,Penv ,Pse)
with Pθ �nite set of processes

Σsys = Asys × (Psys ∪ Pse)
Σenv = Aenv × (Penv ∪Pse)

P-Execution
Execution = word over Σsys ∪ Σenv

8/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions III: Strategies

I Asynchronous synthesis problem

Strategy for System

f : Σ∗ → Σsys ∪ {ε}

An execution is

f -compatible if System actions follow f

f -fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f -compatible, f -fair
executions are in S

?

8/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions III: Strategies

I Asynchronous synthesis problem

Strategy for System

f : Σ∗ → Σsys ∪ {ε}

An execution is

f -compatible if System actions follow f

f -fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f -compatible, f -fair
executions are in S

?

8/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions III: Strategies

I Asynchronous synthesis problem

Strategy for System

f : Σ∗ → Σsys ∪ {ε}

An execution is

f -compatible if System actions follow f

f -fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f -compatible, f -fair
executions are in S

?

8/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

Executions III: Strategies

I Asynchronous synthesis problem

Strategy for System

f : Σ∗ → Σsys ∪ {ε}

An execution is

f -compatible if System actions follow f

f -fair if Environment does not always block System

Winning strategy

f is winning for a set S of executions if all f -compatible, f -fair
executions are in S?

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Example on words

ϕ = ∀x . (req(x)⇒ ∃y .(y > x ∧ ack(y)))

"every req is eventually followed by an ack"

req ack req req ack |= ϕ

req req ack req 6|= ϕ

Syntax for FO on words

Basic formulas: a(x) | x = y | x < y | succ(x , y)
a ∈ A
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Example on words

ϕ = ∀x . (req(x)⇒ ∃y .(y > x ∧ ack(y)))
"every req is eventually followed by an ack"

req ack req req ack |= ϕ

req req ack req 6|= ϕ

Syntax for FO on words

Basic formulas: a(x) | x = y | x < y | succ(x , y)
a ∈ A
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Example on words

ϕ = ∀x . (req(x)⇒ ∃y .(y > x ∧ ack(y)))
"every req is eventually followed by an ack"

req ack req req ack |= ϕ

req req ack req 6|= ϕ

Syntax for FO on words

Basic formulas: a(x) | x = y | x < y | succ(x , y)
a ∈ A
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Example on words

ϕ = ∀x . (req(x)⇒ ∃y .(y > x ∧ ack(y)))
"every req is eventually followed by an ack"

req ack req req ack |= ϕ

req req ack req 6|= ϕ

Syntax for FO on words

Basic formulas: a(x) | x = y | x < y | succ(x , y)
a ∈ A
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Examples on data words

ϕ = ∀x .(req(x)⇒ ∃y .(y ∼ x ∧ y > x ∧ ack(y)))
"every req is eventually followed by an ack on the same process"

(req, 1)(req, 3)(ack, 1)(req, 6)(ack , 6)(ack, 3) |= ϕ

(req, 1)(ack, 2)(req, 1)(ack , 2) · · · 6|= ϕ

Syntax for FO on datawords

Basic formulas: a(x) | x = y | x < y | succ(x , y) | θ(x) | x ∼ y
a ∈ A, θ ∈ {sys, env , se}
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Examples on data words

ϕ = ∀x .(req(x)⇒ ∃y .(y ∼ x ∧ y > x ∧ ack(y)))
"every req is eventually followed by an ack on the same process"

(req, 1)(req, 3)(ack , 1)(req, 6)(ack , 6)(ack , 3) |= ϕ

(req, 1)(ack , 2)(req, 1)(ack , 2) · · · 6|= ϕ

Syntax for FO on datawords

Basic formulas: a(x) | x = y | x < y | succ(x , y) | θ(x) | x ∼ y
a ∈ A, θ ∈ {sys, env , se}
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

9/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic I: De�nition

Examples on data words

ϕ = ∀x .(req(x)⇒ ∃y .(y ∼ x ∧ y > x ∧ ack(y)))
"every req is eventually followed by an ack on the same process"

(req, 1)(req, 3)(ack , 1)(req, 6)(ack , 6)(ack , 3) |= ϕ

(req, 1)(ack , 2)(req, 1)(ack , 2) · · · 6|= ϕ

Syntax for FO on datawords

Basic formulas: a(x) | x = y | x < y | succ(x , y) | θ(x) | x ∼ y
a ∈ A, θ ∈ {sys, env , se}
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀

10/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic II: Satis�ability

I Speci�cation Sϕ = {w | w |= ϕ}

Satis�ability

I: A �rst order formula ϕ
O: Sϕ 6= ∅?

I Decidable for words (but non-elementary) [Büchi, 60]
I Undecidable for data words [Neven et al., 04]

10/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic II: Satis�ability

I Speci�cation Sϕ = {w | w |= ϕ}

Satis�ability

I: A �rst order formula ϕ
O: Sϕ 6= ∅?

I Decidable for words (but non-elementary) [Büchi, 60]
I Undecidable for data words [Neven et al., 04]

10/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic II: Satis�ability

I Speci�cation Sϕ = {w | w |= ϕ}

Satis�ability

I: A �rst order formula ϕ
O: Sϕ 6= ∅?

I Decidable for words (but non-elementary) [Büchi, 60]

I Undecidable for data words [Neven et al., 04]

10/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Executions and Speci�cations

First order logic II: Satis�ability

I Speci�cation Sϕ = {w | w |= ϕ}

Satis�ability

I: A �rst order formula ϕ
O: Sϕ 6= ∅?

I Decidable for words (but non-elementary) [Büchi, 60]
I Undecidable for data words [Neven et al., 04]

11/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Winning triples

I Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ϕ

(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes

Intersection of set of winning triples Win(ϕ) with:

11/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Winning triples

I Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ϕ

(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes

Intersection of set of winning triples Win(ϕ) with:

11/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Winning triples
I Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ϕ

(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes

Intersection of set of winning triples Win(ϕ) with:

N× {0} × {0}: only System processes (satis�ability)

11/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Winning triples
I Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ϕ

(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes

Intersection of set of winning triples Win(ϕ) with:

{0} × {0} × N: each process controlled by both System and
Environment

11/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Winning triples
I Only important point for synthesis is number of processes, not
concrete identities!

Winning triples for ϕ

(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes

Intersection of set of winning triples Win(ϕ) with:

N× {kenv} × {kse}: constant number of Environment and mixed
processes, but unboundedly many System processes

12/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Parameterized synthesis problem

SYNTH(F , (Nsys ,Nenv ,Nse))

I: Alphabet A = Asys] Aenv , formula ϕ ∈ F over A
O: Win(ϕ) ∩ (Nsys ×Nenv ×Nse) 6= ∅?

12/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Parameterized synthesis problem

Example 1

ϕ1 = ∀x .(req(x)⇒ ∃y .(y ∼ x ∧ y > x ∧ ack(y)))

Asys = {ack},
Aenv = {req},
(Nsys ,Nenv ,Nse) = ({0}, {0},N)

I (0, 0, k) is a winning triple for ϕ1 for all k ∈ N:

Winning strategy

f (w) = (ack , i) s.t. σ = (req, i) is the �rst pending req of w

12/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Parameterized synthesis problem

Example 1

ϕ1 = ∀x .(req(x)⇒ ∃y .(y ∼ x ∧ y > x ∧ ack(y)))

Asys = {ack},
Aenv = {req},
(Nsys ,Nenv ,Nse) = ({0}, {0},N)

I (0, 0, k) is a winning triple for ϕ1 for all k ∈ N:

Winning strategy

f (w) = (ack , i) s.t. σ = (req, i) is the �rst pending req of w

12/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Parameterized synthesis problem

Example 2

ϕ2 = (¬∃x .a(x))⇔ (∀y .sys(y)⇒ ∃z .z ∼ y ∧ b(z))

Asys = {b},
Aenv = {a},
(Nsys ,Nenv ,Nse) = (N, {kenv}, {kse})

I No winning triple unless kenv = kse = 0!

12/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

The Synthesis Problem

Parameterized synthesis problem

Example 2

ϕ2 = (¬∃x .a(x))⇔ (∀y .sys(y)⇒ ∃z .z ∼ y ∧ b(z))

Asys = {b},
Aenv = {a},
(Nsys ,Nenv ,Nse) = (N, {kenv}, {kse})

I No winning triple unless kenv = kse = 0!

13/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO
2

Two-variable �rst-order logic: FO2

I FO
2: restrict to two variable names

Examples

∃x , y , z .¬(x ∼ y) ∧ ¬(y ∼ z) ∧ ¬(x ∼ z) /∈ FO
2

∃x .a(x) ∧ (∃y .x < y ∧ a(y) ∧ (∃x .y < x ∧ a(x))) ∈ FO2

I Satis�ability is decidable! [Bojanczyk et al., 06]

13/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO
2

Two-variable �rst-order logic: FO2

I FO
2: restrict to two variable names

Examples

∃x , y , z .¬(x ∼ y) ∧ ¬(y ∼ z) ∧ ¬(x ∼ z) /∈ FO
2

∃x .a(x) ∧ (∃y .x < y ∧ a(y) ∧ (∃x .y < x ∧ a(x))) ∈ FO2

I Satis�ability is decidable! [Bojanczyk et al., 06]

13/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO
2

Two-variable �rst-order logic: FO2

I FO
2: restrict to two variable names

Examples

∃x , y , z .¬(x ∼ y) ∧ ¬(y ∼ z) ∧ ¬(x ∼ z) /∈ FO
2

∃x .a(x) ∧ (∃y .x < y ∧ a(y) ∧ (∃x .y < x ∧ a(x))) ∈ FO2

I Satis�ability is decidable! [Bojanczyk et al., 06]

13/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO
2

Two-variable �rst-order logic: FO2

I FO
2: restrict to two variable names

Examples

∃x , y , z .¬(x ∼ y) ∧ ¬(y ∼ z) ∧ ¬(x ∼ z) /∈ FO
2

∃x .a(x) ∧ (∃y .x < y ∧ a(y) ∧ (∃x .y < x ∧ a(x))) ∈ FO2

I Satis�ability is decidable! [Bojanczyk et al., 06]

14/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO
2

Results for FO2

Theorem [FoSSaCS 20]

SYNTH(FO2, ({0}, {0},N)) is undecidable

Proof

Adapt proof of [Figueira and Praveen, 18] to reduce halting
problem for D2CM:

Counters value encoded by number of processes with an action
from System but not Environment (and vice versa)

FO
2 formula to enforce simulation of a run

14/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO
2

Results for FO2

Theorem [FoSSaCS 20]

SYNTH(FO2, ({0}, {0},N)) is undecidable

Proof

Adapt proof of [Figueira and Praveen, 18] to reduce halting
problem for D2CM:

Counters value encoded by number of processes with an action
from System but not Environment (and vice versa)

FO
2 formula to enforce simulation of a run

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

15/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results

16/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Normal form

Normal form [FoSSaCS 20]

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

16/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Normal form

Normal form [FoSSaCS 20]

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

16/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Normal form

Normal form [FoSSaCS 20]

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

16/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Normal form

Normal form [FoSSaCS 20]

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."
I Local state of a process ` : A→ {0, . . . ,B}

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Game framework for FO[∼] formulas

G = (A,B,F) where A = Asys] Aenv , B > 0, and F is the
acceptance condition

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Arena for Asys = {a},Aenv = {b},B = 2: local states

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Con�guration c maps local states to number of tokens (default: 0)

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Goal g = set of constraints for local states (default: ≥ 0)

Acceptance condition F = disjunction of goals

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Goal g = set of constraints for local states (default: ≥ 0)

Acceptance condition F = disjunction of goals

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5≥ 3

=2

=0 =0

X

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Goal g = set of constraints for local states (default: ≥ 0)
Acceptance condition F = disjunction of goals

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Play on G: System's turn

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

10

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Play on G: Environment's turn

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

X

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Play on G: System's turn

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Play on G: Environment's turn

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

X

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Play on G: System's turn

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5

≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2

18/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Equivalence with FO[∼]
I Asynchronous → turn-based game

No way to specify an order with FO[∼]

(req, 1)(req, 2)(ack, 1)(req, 3)(ack , 2)(ack, 3)
≡ (req, 1)(ack, 1)(req, 2)(ack , 2)(req, 3)(ack , 3)

I Normal form → Acceptance condition

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

18/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Equivalence with FO[∼]
I Asynchronous → turn-based game

No way to specify an order with FO[∼]

(req, 1)(req, 2)(ack , 1)(req, 3)(ack , 2)(ack , 3)

≡ (req, 1)(ack, 1)(req, 2)(ack , 2)(req, 3)(ack , 3)

I Normal form → Acceptance condition

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

18/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Equivalence with FO[∼]
I Asynchronous → turn-based game

No way to specify an order with FO[∼]

(req, 1)(req, 2)(ack , 1)(req, 3)(ack , 2)(ack , 3)
≡ (req, 1)(ack , 1)(req, 2)(ack , 2)(req, 3)(ack , 3)

I Normal form → Acceptance condition

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

18/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Equivalence with FO[∼]
I Asynchronous → turn-based game

No way to specify an order with FO[∼]

(req, 1)(req, 2)(ack , 1)(req, 3)(ack , 2)(ack , 3)
≡ (req, 1)(ack , 1)(req, 2)(ack , 2)(req, 3)(ack , 3)

I Normal form → Acceptance condition

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."

19/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Results [FoSSaCS 20]

Undecidability

SYNTH(FO[∼], ({0}, {0},N)) is undecidable

I Proof idea: encoding 2CM con�guration

(s, c , c ′)
t−→ . . .

19/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Results [FoSSaCS 20]

Undecidability

SYNTH(FO[∼], ({0}, {0},N)) is undecidable

I Proof idea: encoding 2CM con�guration

(s, c , c ′)
t−→ . . .

19/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Results [FoSSaCS 20]

Positive result

SYNTH(FO[∼], (N, {kenv}, {kse})) is decidable

Cuto�

k = (ksys , kenv , kse) is a cuto� wrt (Nsys ,Nenv ,Nse) for ϕ if either:

for all k′ ≥ k, k′ ∈Win(ϕ)

for all k′ ≥ k, k′ /∈Win(ϕ)

I Existence of cuto� ⇒ Synthesis decidable!

19/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Results [FoSSaCS 20]

Positive result

SYNTH(FO[∼], (N, {kenv}, {kse})) is decidable

Cuto�

k = (ksys , kenv , kse) is a cuto� wrt (Nsys ,Nenv ,Nse) for ϕ if either:

for all k′ ≥ k, k′ ∈Win(ϕ)

for all k′ ≥ k, k′ /∈Win(ϕ)

I Existence of cuto� ⇒ Synthesis decidable!

19/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Results [FoSSaCS 20]

Positive result

SYNTH(FO[∼], (N, {kenv}, {kse})) is decidable

Cuto�

k = (ksys , kenv , kse) is a cuto� wrt (Nsys ,Nenv ,Nse) for ϕ if either:

for all k′ ≥ k, k′ ∈Win(ϕ)

for all k′ ≥ k, k′ /∈Win(ϕ)

I Existence of cuto� ⇒ Synthesis decidable!

20/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Conclusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works

Cases left open (FO2[∼], etc.)

Synthesis without global view

I Thank you for your attention! J

20/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Conclusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works

Cases left open (FO2[∼], etc.)

Synthesis without global view

I Thank you for your attention! J

20/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Conclusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works

Cases left open (FO2[∼], etc.)

Synthesis without global view

I Thank you for your attention! J

20/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

Conclusion

Conclusion

Summary

Synthesis for FO on data words is hard, but there are interesting
decidable fragments.

Future works

Cases left open (FO2[∼], etc.)

Synthesis without global view

I Thank you for your attention! J

	Introduction
	Executions and Specifications
	The Synthesis Problem
	FO2
	FO[]
	Conclusion

