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Example on words

ϕ = ∀x . (req(x)⇒ ∃y .(y > x ∧ ack(y)))

"every req is eventually followed by an ack"

req ack req req ack |= ϕ

req req ack req 6|= ϕ

Syntax for FO on words

Basic formulas: a(x) | x = y | x < y | succ(x , y)
a ∈ A
Connectors and quanti�ers: ¬,∨,∧,⇒,∃,∀
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Winning triples for ϕ

(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes

Intersection of set of winning triples Win(ϕ) with:
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(nsys , nenv , nse) ∈ N3 is a winning triple if there is a winning
strategy for data words limited to (nsys , nenv , nse) processes
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(Nsys ,Nenv ,Nse) = ({0}, {0},N)

I (0, 0, k) is a winning triple for ϕ1 for all k ∈ N:

Winning strategy

f (w) = (ack , i) s.t. σ = (req, i) is the �rst pending req of w
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FO
2

Two-variable �rst-order logic: FO2

I FO
2: restrict to two variable names

Examples

∃x , y , z .¬(x ∼ y) ∧ ¬(y ∼ z) ∧ ¬(x ∼ z) /∈ FO
2

∃x .a(x) ∧ (∃y .x < y ∧ a(y) ∧ (∃x .y < x ∧ a(x))) ∈ FO2

I Satis�ability is decidable! [Bojanczyk et al., 06]
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2

Results for FO2

Theorem [FoSSaCS 20]

SYNTH(FO2, ({0}, {0},N)) is undecidable

Proof

Adapt proof of [Figueira and Praveen, 18] to reduce halting
problem for D2CM:

Counters value encoded by number of processes with an action
from System but not Environment (and vice versa)

FO
2 formula to enforce simulation of a run
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FO[∼]

FO[∼]
I FO[∼] = FO without < and succ

∃x .bcast(x) ∧ ∀y .(y 6∼ x ⇒ ∃z .(z ∼ y ∧ rcv(z)))

Some remarks

No way to specify an order

Can count letters on a given class up to some bound B

Can count such classes up to some number

Roadmap

1 Establish normal form for FO[∼]

2 Translate to game formalism

3 Use games to prove results
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≡ "There are ./ m processes of type θ with local state `."
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FO[∼]

Normal form

Normal form [FoSSaCS 20]

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."
I Local state of a process ` : A→ {0, . . . ,B}
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Parameterized Vector Games

Game framework for FO[∼] formulas

G = (A,B,F) where A = Asys ] Aenv , B > 0, and F is the
acceptance condition
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Arena for Asys = {a},Aenv = {b},B = 2: local states

ε

a

b

a2+

a, b

b2+

a2+, b

a, b2+

a2+, b2+

a

b

7

2

1

2

5≥ 3

=2

=0 =0

7

2

1

6

1

1

1

1

4

2

1

1

1

1

2

1

3

1

1

2



17/20

Parameterized Synthesis for Fragments of First-Order Logic over Data Words

FO[∼]

Parameterized Vector Games

Con�guration c maps local states to number of tokens (default: 0)
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Goal g = set of constraints for local states (default: ≥ 0)

Acceptance condition F = disjunction of goals
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Play on G: System's turn
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Equivalence with FO[∼]
I Asynchronous → turn-based game

No way to specify an order with FO[∼]

(req, 1)(req, 2)(ack, 1)(req, 3)(ack , 2)(ack, 3)
≡ (req, 1)(ack, 1)(req, 2)(ack , 2)(req, 3)(ack , 3)

I Normal form → Acceptance condition

There is a bound B ∈ N s.t. ϕ is equivalent to a disjunction of
conjunctions of formulas of the form

∃./my .(θ(y) ∧ ψB,`(y))

≡ "There are ./ m processes of type θ with local state `."
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Results [FoSSaCS 20]

Undecidability

SYNTH(FO[∼], ({0}, {0},N)) is undecidable

I Proof idea: encoding 2CM con�guration

(s, c , c ′)
t−→ . . .
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Cuto�

k = (ksys , kenv , kse) is a cuto� wrt (Nsys ,Nenv ,Nse) for ϕ if either:

for all k′ ≥ k, k′ ∈Win(ϕ)

for all k′ ≥ k, k′ /∈Win(ϕ)

I Existence of cuto� ⇒ Synthesis decidable!
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